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Abstract This advanced tutorial aims at an exposition of problems in finance that
are worthy of study by the Monte Carlo research community. It describes prob-
lems in valuing and hedging securities, risk management, portfolio optimization,
and model calibration. It surveys some areas of active research in efficient proce-
dures for simulation in finance and addresses the impact of the business context
on the opportunities for efficiency. There is an emphasis on the many challenging
problems in which it is necessary to perform several similar simulations.

1 Introduction

This tutorial describes some problems in finance that are of interest to the Monte
Carlo research community and surveys some recent progress in financial applica-
tions of Monte Carlo. It assumes some familiarity with Monte Carlo and its applica-
tion to finance: for an introduction, see [24, 46]. For quasi-Monte Carlo methods in
finance, see [46, 72]. Section 2 provides an overview of financial simulation prob-
lems and establishes notation. Section 3 describes aspects of the business context
for simulation in the financial industry and the implications for researchers. The
principal theme of this tutorial is the need to solve multiple similar simulation prob-
lems and the associated opportunity to design efficient Monte Carlo procedures.
The mathematical settings in which multiple similar problems arise, and the tools
researchers use to deal with them, occupy Section 4. Section 5, on variance reduc-
tion, surveys database Monte Carlo and adaptive Monte Carlo. Section 6 is devoted
to simulation for risk management. American options and portfolio optimization are
covered in Section 7. Section 8 surveys sensitivity analysis by Monte Carlo. Some
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recent progress in simulating solutions of stochastic differential equations appears
in Section 9.

2 Overview of Financial Simulation Problems

Financial simulation models involve a vector stochastic process S of underlying fi-
nancial variables. Let S(t) be the value of S at time t and S j be the jth component of
S. The model is expressed as a probability measure P governing S. A characteristic
feature of finance is that valuation calls for using another measure Q, derived from
P and a choice of numéraire, or unit of account. For example, in the Black-Scholes
model, one may take the numéraire to be S0, a money market account earning inter-
est at a constant rate r. Its value S0(t) = ert . In this model, under the real-world mea-
sure P, the stock price S1 is geometric Brownian motion with drift µ and volatility
σ . Using the money market account as numéraire leads to the risk-neutral measure
Q, under which S1 is geometric Brownian motion with drift r and volatility σ . The
real-world expected price of the stock at a future time T is EP[S1(T )] = S1(0)eµT .
The stock’s value now, at time 0, is S0(0)EQ[S1(T )/S0(T )] = S1(0). In general,
S0(0)EQ[H/S0(T )] is a value for a security whose payoff is H at time T . Thus, we
use P to simulate the real world, but we simulate under Q to value a security.

Figure 1 shows how P and Q enter into the four interrelated problems of valuing
and hedging securities, risk management, portfolio optimization, and model cali-
bration. The model specifies security values as expectations under Q. Sensitivities
of these expectations, to the underlying and to the model’s parameters, are used in
hedging to reduce the risk of loss due to changes in those quantities. In addition to
these sensitivities, real-world probabilities of losses are important in risk manage-
ment. Simulating scenarios under P is one step in sampling from the distribution of
profit and loss (P&L). A portfolio’s P&L in each scenario involves securities’ values
in that scenario, and they are conditional expectations under Q. The same structure
can arise in portfolio optimization, where the goal is to choose the portfolio strategy
that delivers the best P&L distribution. Calibration is a way of choosing a model’s
parameters. It is very difficult to estimate the parameters of P statistically from the
history of the underlying. Instead, one may choose the parameters of Q so that the
prices of certain securities observed in the market closely match the values that the
model assigns to them.

Before elaborating on these four problems, we establish some notation. We dis-
cretize a time interval [0,T ] into m steps, considering the times 0 = t0, t1, . . . , tm = T ,
and let Fi represent the information available at step i after observing S(t0), S(t1),
. . . , S(ti). In applying Monte Carlo, we aim to estimate an expectation or integral
µ = E[Y ] =

∫
f (u)du. The domain of integration is often omitted; it is understood

to be [0,1)d when the variable of integration is u. We often ignore the details of
how to simulate the random variable Y = f (U), where U is uniformly distributed on
[0,1)d . Such details remain hidden in the background: when we generate a point set
u1, . . . ,un in order to estimate µ by ∑

n
i=1 f (ui)/n, each vector ui results in a simu-
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Fig. 1 Ecology of computations in finance

lated path S(i)(t1), . . . ,S(i)(tm), where the superscript (i) indicates that this path is
generated by the ith point or replication. The mapping φ from point to path is such
that when U is uniformly distributed on [0,1)d , φ(U) has the finite-dimensional dis-
tribution specified by P or Q, as appropriate. Sometimes we explicitly consider the
intermediate step of generating a random vector X before computing the random
variable Y = f̃ (X). We will often consider the influence of a parameter vector θ ,
containing initial values of the underlying, parameters of the model, characteristics
of a security, or decision variables. In full generality,

µ(θ) = E[Y (θ)] =
∫

[0,1)d
f (u;θ)du =

∫
f̃ (x;θ)g(x;θ)dx = Eθ [ f̃ (X;θ)].

Derivative Securities. Derivative securities have payoffs that are functions of the
underlying. In many models, the market is complete, meaning that the derivative
security’s payoff can be replicated by trading in the underlying securities. Then,
in the absence of arbitrage, the derivative security’s value should equal the cost of
setting up that replicating strategy, and this is an expectation under Q [46, §1.2]. For
a survey of ideas about how to price a derivative security whose payoff can not be
replicated, see [92]. According to some of these ideas, price bounds are found by
optimizing over hedging strategies or probability measures. Computational methods
for these price bounds have received little attention; exceptions are [75, 84].

The Greeks, sensitivities of derivative security values to the underlying or to
model parameters, are used to measure and to hedge the risk of portfolios. For ex-
ample, where ∆ j = µ ′(S(0)) is the sensitivity of the jth security’s value to small
changes in the underlying asset’s price, the sensitivity of a portfolio containing w j
shares of each security j is ∆ = ∑ j w j∆ j. Selling ∆ shares of the underlying as-
set makes the portfolio value insensitive to small changes in the underlying asset’s
price. It is portfolios, rather than individual securities, that are hedged. However, it
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can be helpful to know the Greeks of each security, which are its contribution to the
portfolio’s Greeks.

The Monte Carlo literature on finance has given a disproportionately great
amount of attention to efficient methods for valuing and hedging some particular
kind of exotic option in isolation. At this point, it is worth shifting attention to
the other three problems or to addressing issues that arise in valuing and hedging
derivative securities because of the business context. Also, research on simulating
recently developed models can contribute to the solution of all four problems. For
example, simulating models with jumps is an important topic of research at present.
The following derivative securities are of particular interest:

• Asian options are important in commodities and foreign exchange, because they
can help non-financial firms hedge risks arising from their businesses.

• Mortgage-backed securities [32] are in the news.
• So are credit derivatives, from single-name credit default swaps to portfolio credit

derivatives such as collateralized debt obligations [13, 40, 41].

All of these lead to a high dimension d for integration, because they involve a large
number m of time steps, and can pose challenges for Monte Carlo and quasi-Monte
Carlo methods.

Risk Management. As illustrated by Figure 1, risk management is a broad sub-
ject that overlaps with the topics of hedging individual securities and of portfolio
optimization. Hedging a portfolio’s Greeks is one approach in risk management.
Another is minimizing a risk measure of the hedged portfolio’s P&L [26]. A risk
measure is a real-valued functional of P&L or the distribution of P&L, such as
variance, value at risk (VaR), or conditional value at risk (CVaR). For example, be-
cause of a regulatory requirement to report VaR, financial firms compute the 99th
percentile of the loss distribution. Because limits on risk constrain activities, and
because regulators impose a costly capital requirement on a financial firm propor-
tional to its risk measure, there is also interest in decomposing the risk measure into
a sum of risk contributions from the firm’s positions or activities. Risk contributions
as often computed as sensitivities of the risk measure to portfolio positions or the
scale of a trading desk’s activities. See [80] for an overview of risk management and
[40, 48] for credit risk modeling.

Portfolio Optimization. Portfolio optimization features a decision variable that
specifies a vector θ of portfolio weights. This may be a static vector or it may be
a stochastic process of portfolio weights that would be chosen in every possible
scenario at each time step. The objective is often to maximize the expected util-
ity E[u(W (T ))] of future wealth W (T ) = θ(T )>S(T ), or to maximize the expected
total discounted utility E[∑m

i=0 e−β tiu(C(ti))] of a consumption process C, which is
another decision variable. The investor’s initial wealth W (0) imposes the budget
constraint θ>S(0) = W (0). A multi-period formulation requires self-financing con-
straints like θ(ti)>S(ti) = θ(ti−1)>S(ti)−C(ti), which may be more complicated if
there are features such as transaction costs and taxes. There may also be constraints
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such as a prohibition against short-selling, θ ≥ 0, or an upper bound on a risk mea-
sure of W (T ). For background on portfolio optimization, see [14, 28, 33].

Model Calibration. Calibrating the model to observed prices of derivative securi-
ties is an inverse problem, usually ill-posed. As shown in the upper left corner of
Figure 1, the model maps a parameter vector θ to a vector of security values µ(θ),
and here the task is to find the θ that yields a given vector p of the securities’ market
prices. The difficulty is that the mapping µ(·) may be non-invertible or the given p
may not be in its range. A standard approach is to put a norm on the space of price
vectors and to use θ ∗ = argminθ ‖µ(θ)− p‖. If the model has many parameters,
it may be necessary to add a penalty term to the objective to prevent over-fitting.
For an exposition, see [27, Ch. 13]. A recent innovation employing Monte Carlo
methods in the search for good parameters is [10].

3 Financial Simulations in Context

Much research on Monte Carlo in finance focuses on computational efficiency: re-
ducing time required to attain a target precision, or attaining better precision given
a fixed computational budget. Efficiency is important: some financial simulations
impose such a heavy computational burden that banks have invested in parallel
computing platforms with thousands of processors. However, the value of efficiency
techniques depends on the context of the business process within which computation
takes place. Because computers are cheap and financial engineers are expensive, the
benefit of a more efficient simulation must be weighed against the cost of analyst
time required to implement it. Efficiency techniques are more valuable the easier
they are to implement and the more broadly applicable they are. Efficiency is most
important for computationally intensive problems, such as those in Section 4. The
software engineering environment may hinder the implementation of efficient sim-
ulation procedures. Many firms use modular simulation software engines in which
path generation does not depend on the security being considered. They may even
generate a fixed set of paths of the underlying, which are then reused for several
purposes, such as pricing many derivative securities. This is an obstacle to imple-
menting some efficiency techniques: for example, it prevents the use of importance
sampling methods tailored to each derivative security.

The Value of Speed. Faster answers are always welcome, but speed is more valu-
able in some applications than others. It does not matter whether it takes 0.1 or 0.01
seconds to deliver a precise estimate of one option price to a trader. However, it does
matter whether it takes 60 hours or 6 hours to measure firm-wide risk over a one-
day horizon: after 60 hours, the answer is useless because that day is over. Faster
calibration is beneficial in delivering more frequently updated model parameters.

The Value of Precision. Faster is always better, but precision can be excessive.
The reason is that precision, related to the reported uncertainty in an estimator, is
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not the same as accuracy, related to how far the estimator is from the truth. In Monte
Carlo, precision relates to the statistical properties of an estimator of a quantity that
is specified by a model; if the estimator is consistent, it is possible to attain arbitrar-
ily high precision by increasing the computational budget. Accuracy also involves
model error, the difference between some quantity as specified by the model and
the value it really has. Only building a better model, not more computational effort,
will reduce model error. It is unhelpful to provide Monte Carlo estimates whose
precision greatly exceeds the model’s accuracy. Of course, this is true in any scien-
tific computing endeavor, but model error tends to be greater in operations research
and finance than in other disciplines such as physics. Therefore the useful degree of
precision in financial simulations is less than in some other scientific computations.

In finance, the possibility of loss due to model error is known as model risk, and
it is quite large: we can not be certain that an option’s expected payoff is $10.05
and not $10.06, nor that value at risk is $10 million as opposed to $11 million.
Simulation output can be too precise relative to model error. Suppose we run a long
simulation and report a 99% confidence interval of [10.33,10.34] million dollars
for value at risk. What this really means is that the Monte Carlo simulation left us
with 99% confidence that our model says that value at risk is between $10.33 and
$10.34 million. However, because of model error, we do not have high confidence
that value at risk actually falls in this interval. Reporting excessive precision is a
waste of time, and it is also dangerous in possibly misleading decision-makers into
thinking that the numbers reported are very accurate, forgetting about model risk.

The utility of precision is also limited by the way in which answers are used.
For example, when Monte Carlo is used in pricing derivative securities, the bid-ask
spread provides a relevant standard: if market-makers charge (“ask”) a dollar more
when they sell an option than they pay (“bid”) when they buy it, they do not need to
price the option to the nearest hundredth of a cent.

As a rough general guideline, I suggest that 0.1% relative error for derivative
security prices and 1% relative error for risk measures would not be too precise in
most applications. Here relative error means the ratio of root mean squared error to
some quantity. Usually it makes sense to take this quantity to be the price or risk
measure being estimated. However, in some applications, the price is zero or nearly
zero and it makes sense to take something else as the denominator of relative error.
For example, in pricing swaps, one may use the swap rate or the notional principal
on which the swap is written (in which case greater precision could be appropriate).

Repeating Similar Simulations. In finance, there are opportunities to improve
efficiency because we often perform multiple simulations that are structurally the
same and only differ slightly in the values of some parameters. Examples of three
kinds of situations in which repeated similar simulations arise are:

• Fixed set of tasks: In electronic trading and market-making, we want to value
many options which differ only in their strike prices and maturities. The strikes
and maturities are known in advance.



Monte Carlo Computation in Finance 7

• Multi-step tasks: Calibration can involve repeated simulations with different
model parameters that are not known in advance, but depend on the results of
previous steps.

• Sequential tasks: We measure a portfolio’s risk every day. Tomorrow’s portfo-
lio composition and model parameters are currently unknown, but will probably
differ only slightly from today’s.

Section 4 describes some problems in which multiple simulations arise and methods
for handling them efficiently. The variance reduction methods of Section 5 also help
in this context. The aim of Database Monte Carlo is to use information generated in
one simulation to reduce the variance of similar simulations. Adaptive Monte Carlo
and related approaches can be applied to choose good variance reduction parameters
to use in one simulation based on the output of a similar simulation.

Thinking about repeated simulations may lead to a paradigm shift in our under-
standing of how Monte Carlo should support computation in finance. The domi-
nant paradigm is to treat each problem that arises as a surprise, to be dealt with by
launching a new simulation and waiting until it delivers a sufficiently precise an-
swer. Instead we might think of a business process as creating an imperative for us
to invest computational resources in being able to estimate µ(θ) for a range of θ .

4 Multiple Simulation Problems

Many of the computationally intensive problems most worthy of researchers’ at-
tention involve multiple simulations. In many cases, these are structurally similar
simulations run with different parameters.

The Portfolio Context A large portfolio, containing a large number ` of securities,
can make risk management and portfolio optimization simulations computationally
expensive. The approach to portfolio valuation is often to choose the number mi
of replications in a simulation to value to the ith security large enough to value this
security precisely, with the result that the total number of replications ∑

`
i=1 mi is very

large. However, [54] point out that if ` is large, the portfolio’s value can be estimated
precisely even if m is very small, as long as each security’s value is estimated with
independent replications: then the variance in estimating each security’s value is
large, but the variance in estimating the portfolio value is small.

Nested Simulations Nested simulation arises when, during a simulation, we would
like to know a conditional expectation. If it is not known in closed form, we may
resort to an inner-level simulation to estimate it. That is, within an outer-level sim-
ulation in which we want to estimate

∫
f (u)du by ∑

n
i=1 f (ui)/n but can not evalu-

ate the function f , we may nest an inner level of simulation, in which we estimate
f (u1), . . . , f (un). See [69] for a general framework for two-level simulation in which
we wish to estimate a functional of the distribution of f (U) and estimate f by Monte
Carlo. For examples of nested simulation, see Section 6 on risk management, where
inner-level simulation estimates a portfolio’s value in each scenario simulated at the
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outer level, and Section 7 on American option pricing, where inner-level simulation
estimates the option’s continuation value at every potential exercise date on each
path simulated at the outer level. For the sake of computational efficiency, it is de-
sirable to avoid a full-blown nested simulation, which tends to require a very large
total number of replications: mn if each of n outer-level scenarios or paths receives
m inner-level replications. One way of avoiding nested simulation is metamodeling.

Metamodeling Metamodeling of a simulation model is the practice of building an
approximation µ̂ to a function µ , using a simulation model that enables estima-
tion of µ(θ) for any θ in a domain Θ . One purpose of metamodeling is to be able to
compute an approximation µ̂(θ) to µ(θ) quickly. Many simulation models are slow
to evaluate µ(θ), but metamodels are constructed so that they are fast to evaluate.
This makes them useful in dealing with repeated similar simulations (§3). It can be
faster to build a metamodel and evaluate it repeatedly than to run many separate
simulations, so metamodeling can reduce the computational burden of a fixed set of
tasks or a multi-step task. In dealing with sequential tasks, metamodeling enables an
investment of computational effort ahead of time to provide a rapid answer once the
next task is revealed. Another benefit of metamodeling is that it supports visualiza-
tion of the function’s behavior over the whole domain Θ , which is more informative
than merely estimating local sensitivity.

Metamodeling is better developed for deterministic simulations than for stochas-
tic simulations, but it is becoming more widespread in stochastic simulation: for ref-
erences, see [3]. In deterministic simulation, the metamodel is built by running the
simulation model at some design points θ 1, . . . ,θ k and using the observed outputs
µ(θ 1), . . . ,µ(θ k) to construct µ̂ by regression, interpolation, or both. In stochastic
simulation, this is not exactly possible, because µ(θ i) can only be estimated; we
explain below how to deal with this conceptual difficulty. The two main approaches
to metamodeling are regression and kriging. Regression methods impose on the
metamodel µ̂ a particular form, such as quadratic, composed of splines, etc. Then
the unknown coefficients are chosen to minimize the distance between the vectors
(µ(θ 1), . . . ,µ(θ k)) and (µ̂(θ 1), . . . , µ̂(θ k)). Finance is one of the applications in
which it may be hard to find a form for µ̂ that enables it to approximate µ well over
a large domain Θ . However, in some applications such as sensitivity estimation and
optimization, it may only be necessary to approximate µ well locally. Unlike re-
gression, kriging is an interpolation method that forces the metamodel to agree with
the simulation outputs observed at all design points. However, it can be combined
with estimation of a trend in µ(θ) as a function of θ , as in regression. There are two
principal difficulties for metamodeling of financial simulations.

One is that metamodeling is hard when θ is high-dimensional and when µ is dis-
continuous or non-differentiable. One remedy for the latter problem is to construct
separate metamodels in different regions, such that µ is differentiable on each re-
gion. In some cases, the troublesome points are known a priori. For example, in a
typical option pricing example, the option price µ is non-differentiable where the
stock price equals the strike price and time to maturity is zero. In other cases, it
is not known in advance whether or where µ may be badly behaved. It may help
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to apply methods that automatically detect the boundaries between regions of Θ in
which there should be separate metamodels [55].

The second obstacle is common to all stochastic simulations. It involves the con-
ceptual difficulty that we can not observe the true value µ(θ) at any input θ , and a
related practical shortcoming. We might deal with the conceptual difficulty in one of
two ways. One way is to use quasi-Monte Carlo or fix the seed of a pseudo-random
number generator and regard the output ν of the stochastic simulation as determin-
istic, given that these common random numbers (CRN) are used to simulate at any
input θ . We can build a metamodel ν̂ of ν , but its output ν̂(θ) is an approxima-
tion to ν(θ), the output that the simulation would produce if it were run at θ with
CRN, not necessarily a good approximation to the expectation µ(θ) that we want
to know. Then the practical shortcoming is that ν(θ) needs to be a precise estimate
of the expectation µ(θ), so the number of replications used at each design point
must be large. The second way to deal with the conceptual difficulty is to use dif-
ferent pseudo-random numbers at each design point θ i, but build a metamodel by
plugging in a precise simulation estimate for µ(θ i) anyway. This entails the same
practical shortcoming, and the Monte Carlo sampling variability makes it harder to
fit a good metamodel. It is a practical shortcoming to need many replications at each
design point because, given a fixed computational budget, it might be more efficient
to have more design points with fewer replications at each. Stochastic kriging [3]
is one solution to these problems. It shows how uncertainty about the expectation
µ(θ) arises from the combination of interpolation and the Monte Carlo sampling
variability that affects the stochastic simulation output as an estimate of µ(θ i) for
each design point. Stochastic kriging makes it possible to get a good approximation
to µ(θ) even when the number of replications at each design point is small and pro-
vides a framework for analyzing the trade-off between having many design points
and having more replications at each of them.

Metamodeling is closely related in its aims to database Monte Carlo (§5).

Optimization Another reason that one might need to obtain Monte Carlo estimates
of µ(θ) for multiple values of θ is when optimizing over θ , if simulation is needed
in evaluating the objective or constraints of the optimization problem. This is opti-
mization via simulation (OvS): for an overview, see [34, 60]. In the following, we
concentrate on the problem minθ∈Θ µ(θ) of minimizing an expectation that must
be estimated by Monte Carlo over a continuous decision space Θ defined by con-
straints that can be evaluated without Monte Carlo. The typical pattern is that an op-
timization procedure visits candidate solutions θ 0,θ 1, . . . ,θ K sequentially, at each
step j using information generated by Monte Carlo to choose θ j. It is quite useful
in choosing θ j to be able to estimate the gradient ∇µ(θ j−1): see Section 8.

• Sample Average Approximation. The simplest approach is to approximate the
objective value µ(θ) by the sample average µ̂(θ) = ∑

n
i=1 f (ui;θ)/n. That is, the

common random numbers u1, . . . ,un are used to estimate the objective at any
candidate solution θ j. To minimize µ̂ , one can use a gradient-free optimization
procedure or use the gradient ∇µ̂(θ) = ∑

n
i=1 ∇θ f (ui;θ)/n if available.
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• Metamodeling and Stochastic Approximation. Another approach involves
running more simulations at each step, using increasing total simulation effort
as the optimization procedure converges to the optimal θ . Sequential metamod-
eling [7] considers a neighborhood Θ j of θ j−1 at step j, and builds a metamodel
µ̂ j that approximates µ locally, on Θ j. The gradient ∇µ̂ j helps in choosing θ j.
(Because of the difficulty of building metamodels that fit well globally, it has
not been common practice in OvS simply to build one metamodel and minimize
over it.) Stochastic approximation depends on ways of computing an estimate
∇̂µ(θ) of the gradient that are described in Section 8 and [35]. At step j, the next
candidate solution is θ j = θ j−1− γ j∇̂µ(θ j−1). It can be troublesome to find a
sequence of step sizes {γ j} j∈N that works well for one’s particular optimization
problem [34]. For recent progress, see [18, 82]. Other questions include whether
it is best to estimate the optimal θ by θ n or a weighted average of θ 1, . . . ,θ n, or
to constrain θ j from moving too far from θ j−1; see [60].

• Metaheuristics. Various metaheuristic methods, such as simulated annealing
and genetic algorithms, use Monte Carlo to solve optimization problems heuris-
tically, even if the objective µ can be evaluated without Monte Carlo: they ran-
domly select the next candidate solution θ j. See [83] for an overview in the
simulation context, where it is typical to employ the metaheuristic simply by
using a simulation estimate µ̂(θ j) in place of each µ(θ j). Metaheuristics can
solve difficult optimization problems, such as model calibration problems that
are non-convex, with multiple local minima and regions in which the objective is
very flat. However, they are called metaheuristics because they require tailoring
to the specific problem to produce an algorithm that works well. Randomness
over candidate solutions can have more benefits than escaping from local min-
ima: for example, [10] uses a metaheuristic optimization procedure to account
for the parameter uncertainty that remains after model calibration.

• Approximate Dynamic Programming. This discussion of optimization has not
yet explicitly taken into account optimization over policies that include decisions
at multiple times, which is important for American options and dynamic portfolio
optimization. This is the subject of dynamic programming, in which the optimal
decision at each time maximizes a value function, such as the expected utility
of terminal wealth as a function of underlying prices and the composition of the
portfolio. Approximate dynamic programming (ADP) is a solution method for
dynamic programs that are too large to solve exactly. Instead of computing the
exact value of each state, ADP constructs an approximate value function. Monte
Carlo can help in approximating the value function: then ADP is closely related
to simulation metamodeling. For more on ADP, see [11, 88, 89].

5 Variance Reduction

Here we discuss only two active areas of research in variance reduction that have
important applications in finance.
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Database Monte Carlo. The idea of database Monte Carlo (DBMC) is to invest
computational effort in constructing a database which enables efficient estimation
for a range of similar problems [16]. In finance, it is often important to solve a whole
set of similar problems (§3). The problems are indexed by a parameter θ , and we
want to estimate µ(θ) =

∫
f (u;θ)du for several values of θ , for example, to price

several options of different strike prices. DBMC involves choosing a base value
θ 0 of the parameter and evaluating f (·;θ 0) at many points ω1, . . . ,ωN in [0,1)d .
The set {(ω i, f (ω i;θ 0))}i=1,...,N constitutes the database. DBMC provides a generic
strategy for employing a variance reduction technique effectively: the purpose of
investing computational effort in the database is that it enables powerful variance
reduction in estimating µ(θ) for values of θ such that f (·;θ) is similar to f (·;θ 0). It
may be possible to estimate µ(θ) well with f (·,θ) evaluated at only a small number
n of points. DBMC has been implemented with stratification and control variates
[16, 96, 97, 98]. All but one of the methods in these papers are structured database
Monte Carlo (SDMC) methods, in which further effort is expended in structuring
the database: the database is sorted so that f (ω i;θ 0) is monotone in i [98].

SDMC with stratification partitions {1, . . . ,N} into n� N strata I1 = {1, . . . , i1},
I2 = {i1 + 1, . . . , i2}, . . . , In = {in−1 + 1, . . . ,N}. (How best to partition is a sub-
ject of active research.) It then performs stratified resampling of u1, . . . ,un from
{ω1, . . . ,ωN}. That is, u1 is drawn uniformly from the set {ω i : i ∈ I1}, u2 uni-
formly from {ω i : i ∈ I2}, etc. SDMC then estimates µ(θ) by ∑

n
j=1 p j f (u j;θ)

where p j = |I j|/N = (i j − i j−1)/N. If this stratification provides good variance
reduction, then ∑

n
j=1 p j f (u j;θ) is a good estimator of ∑

N
i=1 f (ω i;θ)/N. In turn,

∑
N
i=1 f (ω i;θ)/N is a good estimator of µ(θ) because N is large. Then, even though

n is small, ∑
n
j=1 p j f (u j;θ) is a good estimator of µ(θ).

The advantage of SDMC can be understood by viewing it as a scheme for au-
tomatically creating good strata. Ordinary stratification requires partitioning [0,1)d

into strata, and it is time-consuming and difficult to find a good partition, especially
because the partition must be such that we know the probability of each stratum
and how to sample uniformly within each stratum. Although SDMC actually strati-
fies the database, it is similar to partitioning [0,1)d into strata X1, . . . ,Xn such that
{ω i : i ∈ I j} ⊆X j for all j = 1, . . . ,n. Typically, this partition is better than one
that an analyst could easily create, because SDMC takes advantage of knowledge
about f (·;θ 0) that is encoded in the database. If f (ω i,θ) is close to monotone in the
database index i, then SDMC with stratification provides excellent variance reduc-
tion [97]. SDMC avoids issues that make it hard for analysts to find good partitions.
We need not know the stratum probabilities, because they are estimated by sample
proportions from the database. Nor do we need to know how to sample from the
conditional distribution of f (U;θ) given that it falls in a certain stratum, because
stratified sampling is performed using the database indices.

DBMC applied to control variates [16] leads to the idea of a quasi-control variate
[31], i.e., a random variable used as a control variate even though its mean is un-
known and merely estimated by Monte Carlo [85]. In DBMC, one can use f (u;θ 0)
as a quasi-control variate, with estimated mean ∑

N
i=1 f (ω i;θ 0)/N. One may resam-

ple u1, . . . ,un from {ω1, . . . ,ωN} or instead use fresh points u1, . . . ,un, and then es-
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timate µ(θ) by ∑
n
j=1 f (u j;θ)/n−β (∑n

j=1 f (u j;θ 0)/n−∑
N
i=1 f (ω i;θ 0)/N). There

are also SDMC methods which involve sorting the database and using the database
index as a control variate [96].

DBMC is a powerful and exciting new strategy for variance reduction when han-
dling multiple similar problems. DBMC methods are generic and provide automated
variance reduction, requiring relatively little analyst effort. Open questions remain,
especially in experiment design for DBMC. What is the optimal database size N
when one must estimate µ(θ 1), . . . ,µ(θ k) given a fixed budget C = N +kn of func-
tion evaluations? We may be interested in some values of θ that are near the base
value θ 0 and others that are far: when is it worthwhile to restructure the database or
create a new database at another base value?

Such questions emphasize differences between DBMC, in its present state of de-
velopment, and metamodeling. DBMC and metamodeling are two ways of using
an investment of computational effort to get fast estimates of µ(θ) for many val-
ues of θ . However, they work quite differently. Metamodeling provides an estimate
of µ(θ) without any further simulation, but the estimate is biased, in general; when
metamodeling works badly, large errors can result. Metamodeling works by exploit-
ing properties of the function µ , whereas DBMC works by exploiting properties of
f . DBMC estimates µ(θ) with a small simulation of n replications, and the re-
sulting estimate is unbiased (ignoring bias due to estimating coefficients of control
variates). The parallel to metamodeling suggests extending DBMC to incorporate
information from multiple simulations, not just one at θ 0.

Adaptive Monte Carlo. The fundamental idea of adaptive Monte Carlo is to im-
prove the deployment of a variance reduction technique during the simulation, us-
ing information generated during the simulation. That is, the variance reduction
technique is parameterized by ϑ , where the special notation ϑ indicates that pa-
rameter does not affect the mean µ = E[ f (U;ϑ)]. However, it does affect the vari-
ance Var[ f (U;ϑ)]. Adaptive Monte Carlo uses simulation output to choose ϑ to re-
duce the variance Var[ f (U;ϑ)]. A number of Monte Carlo methods can be viewed
as adaptive to some extent, even the long-standing practice of using regression to
choose the coefficients of control variates based on simulation output.

This standard way of implementing control variates illustrates a recurrent ques-
tion in adaptive Monte Carlo: should one include the replications used to choose ϑ

in the estimator of µ , or should one throw them out and include only fresh repli-
cations in the estimator? If separate batches of replications are used to choose the
coefficients and to estimate the expectation, the estimator with control variates is
unbiased. However, it is preferable to use the same replications for both tasks, de-
spite the resulting bias, which goes to zero as the sample size goes to infinity [46,
§4.1.3]. Many adaptive Monte Carlo methods include all the replications in the es-
timator, which is nonetheless asymptotically unbiased under suitable conditions. In
some portfolio risk measurement and American option pricing problems, the bias
may be large at the desired sample size. There are methods for these problems, dis-
cussed in Sections 6 and 7, that use a fresh batch of replications to reduce bias or to
deliver probabilistic bounds for bias.
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There are two main approaches to adaptive Monte Carlo. In one approach, the
analyst chooses a parameterized variance reduction scheme, and adaptive Monte
Carlo tries to choose ϑ to attain variance near infϑ Var[ f (U;ϑ)]. The other ap-
proach is oriented towards learning a value function which, if known, would enable
zero-variance simulation. This kind of adaptive Monte Carlo achieves variance re-
duction by making use of an approximation to the value function. In finance, both
approaches employ optimization via simulation (§4), either to minimize variance or
to find the approximate value function that best fits the simulation output. Stochastic
approximation (SA) and sample average approximation (SAA) have been employed
as optimization methods. Importance sampling and control variates are the most
common variance reduction methods in this literature.

In the variance-minimization approach, [21] uses SAA while [4, 93] use SA.
The procedures using SA can have multiple stages: at stage n, variance reduction is
performed using the parameter ϑ n−1, and then the parameter is updated to ϑ n based
on the new simulation output. The estimator is computed by [93] as an average of
fresh replications in the last stage, which were never used to choose the variance
reduction parameter; it is an average of all replications in [4] and papers that follow
it. Under suitable conditions, the variance reduction parameter ϑn converges to an
optimal choice, and the average over all replications is a consistent, asymptotically
normal estimator. Still, it would also be well to confirm the bias is negligible at the
relevant sample sizes. Another issue is how many replications should be in each
stage, between updates of ϑ . Although classic SA procedures may update ϑ after
each replication, that will usually entail too much computational effort when the
goal is variance reduction, or rather, a reduction in work-normalized variance.

The approach that approximates a value function V is surveyed by [73] in a
Markov-chain setting. In finance, V (t,S(t)) may be an option’s price when the un-
derlying is S(t) at time t, for example. An approximate value function V̂ is built
by metamodeling (§4). Adaptive control variates work by using V̂ to construct a
martingale whose ith increment is V̂ (ti,S(ti))−E[V̂ (ti,S(ti))|Fi−1], and using it as
a control variate. Adaptive importance sampling works by setting the likelihood
ratio for step i to V̂ (ti,S(ti))/E[V̂ (ti,S(ti))|Fi−1]. For the sake of computational ef-
ficiency, V̂ should be such that E[V̂ (ti,S(ti))|Fi−1] can be computed in closed form.
If the true value function V could be substituted for the approximation V̂ , then the
control variate or importance sampling would be perfect, resulting in zero variance
[63]. A bridge between the two approaches is [66], using SA and SAA methods
to construct V̂ by minimizing the variance that remains after it is used to provide
a control variate. In finance, this approach to adaptive Monte Carlo has been used
above all for American options: [30, 63] use SAA and regression metamodeling for
this purpose. Because metamodeling is commonly used anyway in American option
pricing, to identify a good exercise policy, the marginal computational cost of using
the metamodel to find a good control variate or importance sampling distribution
can be small, making this adaptive Monte Carlo approach very attractive.
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6 Risk Management

Monte Carlo methods in risk management are an active area of research. A straight-
forward Monte Carlo approach is to sample scenarios S(1)(T ) , . . . , S(n)(T ) and
in each scenario to compute P&L V (T,S(T ))−V (0,S(0)), the change in the port-
folio’s value by time T . It is natural to have a high dimensional for S because a
portfolio’s value can depend on many factors. There are two main computational
challenges in risk measurement.

One challenge is that risk measures such as VaR and CVaR focus on the left tail
of the distribution of P&L, containing large losses. It is a moderately rare event for
loss to exceed VaR, so straightforward Monte Carlo estimation of a large portfolio’s
risk can be slow. This makes it worthwhile to pursue variance reduction: see [46,
Ch. 9] for general techniques and [8, 25, 48, 49, 51] for techniques specific to credit
risk.

The second challenge arises when the portfolio value function V (T, ·) is un-
known, so P&L in each scenario must be estimated by Monte Carlo. This leads
to a computationally expensive nested simulation (§4): simulation of scenarios un-
der P (as in the lower left corner of Figure 1) and a nested simulation under Q
conditional on each scenario, to estimate the portfolio value V (T,S(T )) in that sce-
nario. In particular, nested simulation is generally biased, which causes a poor rate
of convergence for the Monte Carlo estimate as the computational budget grows.
This makes it worthwhile to explore ways to make the simulation more efficient:

• Jackknifing can reduce the bias [54, 74].
• Although variance is not always a good portfolio risk measure, it can be useful

in evaluating hedging strategies. Unbiased estimation of the variance of P&L by
nested simulation is possible. Indeed, a nested simulation with small computa-
tional effort devoted to each scenario, and thus inaccurate estimation of P&L in
each scenario, can provide an accurate estimator of the variance of P&L [94].

• It helps to optimize the number n of scenarios to minimize MSE or confidence
interval width given a fixed computational budget [54, 68].

• When the risk measure emphasizes the left tail of the distribution, is desirable to
allocate more computational effort to simulating the scenarios that seem likely to
be near VaR (when estimating VaR) or to belong to the left tail (for CVaR). This
suggests adaptive simulation procedures, in which the allocation of replications
at one stage depends on information gathered at previous stages. One approach is
to eliminate scenarios once they seem unlikely to belong to the left tail [70, 78].
Another is to make the number of replications somehow inversely proportional
to the estimated distance from a scenario to the left tail or its boundary [54].

• Metamodeling (§4) and database Monte Carlo (§5) can be useful in portfolio risk
measurement because it involves many similar simulation problems: estimating
P&L in many scenarios. Metamodeling can be successful because P&L is often a
well-behaved function of the scenario. It has been applied in [9] and in an adap-
tive procedure for estimating CVaR by [79], where more computational effort is
allocated to design points near scenarios with large losses.
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Estimating sensitivities of risk measures is studied in [47, 61, 62, 76]. They can
provide risk components or be useful in optimization.

7 Financial Optimization Problems

The finance problem most clearly linked to optimization is portfolio optimiza-
tion. Before discussing Monte Carlo methods for portfolio optimization, we turn
to American option pricing. It involves a simple optimization problem, and Monte
Carlo methods for American option pricing have been more thoroughly studied. See
Section 4 for background on optimization via simulation.

American Options. Monte Carlo is best suited for European options, which can
be exercised only at maturity. American options can be exercised at any time un-
til maturity. The owner of an American option faces an optimal stopping problem.
Let τ represent the exercise policy: the random variable τ = τ(U) is the stopping
time at which exercise occurs. The resulting payoff is f (U;τ). Pricing methods for
American options involve computing the optimal exercise policy τ∗ that maximizes
the value E[ f (U;τ)] of the option, while computing the price E[ f (U;τ∗)]. It is opti-
mal to exercise at time t if the payoff f (U; t) of doing so exceeds the continuation
value, the conditional expectation of the payoff earned by exercising at the optimal
time after t. Because a continuous-time optimal stopping problem is troublesome
for simulation, much research on the topic of American options actually deals with
Bermudan options, which can be exercised at any one of the times {t1, . . . , tm}. A
Bermudan option with a sufficiently large set of possible exercise times is treated as
an approximation of an American option. Even Bermudan options are not straight-
forward to price by Monte Carlo methods: at every step on every path, one needs
to know the continuation value to make the optimal decision about whether to ex-
ercise. A naive approach, which is impractical due to excessive computational re-
quirements, is nested simulation (§4): at every step on every path, estimate the con-
tinuation value by an inner-level simulation. For overviews of Monte Carlo methods
in American option pricing, see [15, 24, 39, 46]. Here we merely emphasize con-
nections to themes of financial simulation.

• The most popular approach to American option pricing, regression-based Monte
Carlo, is a form of approximate dynamic programming (ADP). The optimal stop-
ping problem is relatively easy for ADP because there are only two actions, con-
tinue or exercise, and they do not affect the dynamics of the underlying.

• After choosing a sub-optimal exercise policy τ and sampling U independently,
f (U;τ) is an estimator of the American option price with negative bias. Duality
yields an estimator with positive bias: see [56] and references therein, particularly
[2]. This enables a conservative confidence interval that is asymptotically valid
for large simulation sample sizes. A bias reduction method is developed in [65].

• Adaptive Monte Carlo (§5) is very useful in American option pricing. It is con-
nected to duality: according to [63], “the perfect control variate solves the ad-
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ditive duality problem and the perfect importance sampling estimator solves the
multiplicative duality problem.”

American option pricing remains an active research area because there are many ri-
val methods that are amenable to improvement. There is potential to gain efficiency
by adaptive simulation that allocates extra simulation effort to design points near
the boundary where estimated exercise and continuation values are equal. High-
dimensional problems remain challenging. It would also be good to better under-
stand and to reduce the error in approximating an American by a Bermudan option.

Portfolio Optimization. An introduction to this topic, stressing the connection be-
tween American option pricing and portfolio optimization, while emphasizing the
value of dual methods, is [56]. The purpose of the dual methods is to provide an up-
per bound on the optimal expected utility: one can use simulation to estimate both
the expected utility a candidate portfolio strategy provides and the upper bound
on the optimal expected utility, and compare these estimates to see if the candi-
date is nearly optimal [57]. Other ADP methods in portfolio optimization include
[17, 81, 95]. ADP is not the only Monte Carlo approach to portfolio optimization.
For an overview, see [14]. Another method uses Monte Carlo to estimate conditional
expectations involving Malliavin derivatives, which are proved to be the optimal
portfolio weights for a portfolio optimization in a complete market [29].

8 Sensitivity Analysis

Many problems in finance call for estimation of the sensitivity µ ′(θ) of a mean
µ(θ) to a parameter θ : the Greeks are of direct interest in hedging, and sensitivities
are needed in gradient-based optimization. Approaches to estimating sensitivities
via simulation include:

• Finite differences (FD). Run the simulation at two values θ1 and θ2 in the neigh-
borhood of θ , using common random numbers. The FD estimator is ( f (U;θ1)−
f (U;θ2))/(θ1−θ2). This approach is biased and computationally inefficient.

• Metamodeling (M, §4) can be viewed as a variant of FD that is helpful when es-
timating sensitivities with respect to many parameters: where FD would require
running many simulations, metamodeling can provide an answer based on simu-
lations at only a few design points. To estimate first-order sensitivities, fit a linear
metamodel locally, in a neighborhood of θ . To get second-order sensitivities too,
fit a quadratic metamodel locally.

• The pathwise (PW) method, known outside finance as infinitesimal perturbation
analysis (IPA). Under some conditions, µ ′(θ) = E[Y ′(θ)], so an unbiased estima-
tor is Y ′(θ) = (∂ f /∂θ)(U;θ). It may be easy to compute this if θ is a parameter,
such as a strike price, that has a simple, direct effect on the payoff, but it might
be hard if θ is a parameter that governs the distributions of random variables in
the simulation. This method can only be applied if Y is suitably differentiable;
there are a number of cases in finance in which it does not apply.
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• Smoothed perturbation analysis (SPA) is an extension of IPA. It works by re-
formulating the simulation model: if there is a conditional expectation Ỹ (θ) =
E[Y (θ)|F ] that can be computed and Ỹ is a smoother function of θ than Y is,
then the estimator Ỹ ′(θ) can be used when IPA does not apply. This approach re-
quires the analyst to identify a good set of information F on which to condition,
and to compute the conditional expectation.

• IPA can have problems in first or second derivative estimation because of discon-
tinuity or non-differentiability of the integrand in the commonplace case where
Y (θ) = f (U;θ) has the form f1(U;θ)1{ f2(U;θ) ≥ 0}. Kernel smoothing leads
to the estimator

∂ f1

∂θ
(U;θ)1{ f2(U;θ)≥ 0}+ 1

δ
f1(U;θ)

∂ f2

∂θ
(U;θ)φ

(
f2(U;θ)

δ

)
,

where φ is the kernel and δ is the bandwidth [77]. In contrast to SPA, kernel
smoothing requires no analyst ingenuity: a Gaussian kernel and automated band-
width selection perform well. This estimator is biased, although it is consistent
under some conditions which may be hard to verify.

• The likelihood ratio (LR) method, also known outside finance as the score func-
tion method, involves differentiating a density g(·;θ) instead of differentiating a
payoff. Here we require a representation µ(θ) =

∫
f (u;θ)du =

∫
f̃ (x)g(x;θ)dx,

framing the simulation as sampling the random vector X(U;θ) which has den-
sity g(·;θ). In the new representation, Y (θ) = f (U;θ) = f̃ (X(U;θ)), so f̃ has
no explicit dependence on θ : applying the method requires θ to be a parameter
only of the density. Under some conditions,

µ
′(θ) =

∫
f̃ (x)

∂g(x;θ)/∂θ

g(x;θ)
g(x;θ)dx = E

[
Y (θ)

∂g(X;θ)/∂θ

g(X;θ)

]
,

so an unbiased estimator is Y (θ)(∂g(X;θ)/∂θ)/g(X;θ). If the density is not
known in closed form, one may apply the LR method instead to a discretized
version of the underlying stochastic process.

• Malliavin calculus can provide estimators of sensitivities. Implementing these
estimators generally requires that time be discretized. The resulting estimators
are asymptotically equivalent, as the number of time steps m→ ∞, to combina-
tions of PW and LR estimators for the discretized process [23]. Combinations of
PW and LR methods are also used to overcome the limitations of PW and of LR
in isolation. For a unified view of the PW and LR methods, see [71].

• The method of weak derivatives (WD) can be explained based on LR [37]: sup-
pose ∂g(x;θ)/∂θ can be written in the form c(θ)(g1(x;θ)− g2(x;θ)), where
g1(·;θ) and g2(·;θ) are densities. If the LR approach is valid, then

µ
′(θ) = c(θ)

(∫
f̃ (x)g1(x;θ)dx−

∫
f̃ (x)g2(x;θ)dx

)
= c(θ)E

[
f̃ (X1)− f̃ (X2)

]
,
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where X1 and X2 are sampled according to the densities g1(·;θ) and g2(·;θ)
respectively: an unbiased estimator is c(θ)( f̃ (X1)− f̃ (X2)). (However, the WD
approach does not actually require differentiating the density.) Here we did not
specify how the original pseudo-random numbers would be used to simulate X1
and X2. The whole structure of the simulation is changed, and the dependence or
coupling of X1 and X2 has a major effect on the estimator’s variance.

For introductions to these methods, see [24, 37, 43, 46]. Important early references
include [19, 38]. The different methods have different realms of applicability and,
when two of them apply, they can yield estimators with very different variances.

A recent advance has been in speeding up PW computations of multiple Greeks
of the same derivative security price using adjoint methods [43, 45]. Another ac-
tive area of research is estimation of sensitivities when the underlying stochastic
process has jumps: see e.g. [52]. A further topic for future work is the application
of WD to estimating sensitivities in financial simulation: although weak derivatives
were applied to simulating the sensitivities of option prices in [58], the WD method
has not received enough attention in finance. For results on WD when underlying
distributions are normal, as happens in many financial models, see [59].

9 Discretization of Stochastic Differential Equations

Many financial simulations involve stochastic differential equations (SDEs). The
solution S to an SDE is a continuous-time stochastic process, but it is standard to
discretize time and simulate S(t1), . . . ,S(tm). In some models, it is possible to simu-
late exactly, that is, from the correct distribution for (S(t1), . . . ,S(tm)). However, in
many models, it is not known how to do so. Discretization error is the difference
between the distribution of (S(t1), . . . ,S(tm)) as simulated and the distribution it
should have according to the SDE. Discretization error causes discretization bias in
the Monte Carlo estimator. To reduce the discretization bias, one increases the num-
ber m of steps, which increases the computational cost of simulating S(t1), . . . ,S(tm).
On quantifying and reducing this discretization bias, see [46, 67], or [24, 53] for in-
troductions. Some research on SDE discretization is specific to one model, that is,
to one SDE, while some is generic.

Model-specific research may consist of showing how to simulate a certain model
exactly or how to reduce discretization error. For example, recently there have been
major improvements in simulating the Heston model [1, 20, 50]. On simulation of
Lévy processes, see [5] and [27, Ch. 6]. Lévy processes used in finance include VG
and CGMY: on simulating these, see [6, 36, 64, 87].

The generic research includes the study of different discretization schemes and
the rate at which discretization bias decreases as the number m of steps increases.
This rate may be unaffected by replacing the normal random variables typically used
in SDE discretization by simpler random variables which are faster to simulate, e.g.
having discrete distributions with only three values [46, pp. 355-6]. It would be
interesting to explore the application of quasi-Monte Carlo to a simulation scheme
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using these discrete random variables. One active research topic, based on [86],
involves new discretization schemes, the quadratic Milstein scheme and a two-stage
Runge-Kutta scheme, along with a new criterion, microscopic total variation, for
assessing a scheme’s quality.

We next consider two important recent developments in simulating SDEs.

Multi-Grid Extrapolation. One method for reducing discretization error is ex-
trapolation [46, §6.2.4]. Let µ̂(m) be a simulation estimator based on discretizing
an SDE with m time steps, and µ̂(2m) be the estimator when 2m time steps are used.
Because of bias cancelation, the estimator 2µ̂(2m)− µ̂(m) can have lower bias and a
better rate of convergence. This idea is extended by [44] to multiple grids of different
fineness, instead of just two. The estimator given L grids, with N` paths simulated
on the `th grid which has m` steps, is ∑

L
`=1 ∑

N`
i=1(µ̂(i)(m`)− µ̂(i)(m`−1))/N`, where

µ̂(i)(m`) involves simulating the same Wiener process sample path {W (i)(t)}0≤t≤T
for all grids. It is efficient to simulate fewer paths using the fine grids than with the
coarse grids. For one thing, even if N` is small for a fine grid, including this `th
grid contributes a correction term E[µ̂(i)(m`)− µ̂(i)(m`−1)] that reduces bias. Fur-
thermore, simulating paths on a fine grid is computationally expensive, while the
variance of µ̂(i)(m`)− µ̂(i)(m`−1) tends to be small for the fine grids. Consequently,
computational resources are better spent on coarser grids where it is cheap to attack
large components of the variance. The result is reduced bias and better rates of con-
vergence. QMC should be useful particularly when applied to the coarser grids. A
related approach involving multiple grids [91] is based on the idea that coarse grids
provide biased control variates [90].

Exact Simulation of SDEs. Surprisingly, it is sometimes possible to simulate a
scalar diffusion S exactly even when it is not possible to integrate the SDE in
closed form to learn the distribution of (S(t1), . . . ,S(tm)) [12, 22]. The basic idea
is to sample according to the law of S by acceptance-rejection sampling of paths
of a Wiener process W . If a path {W (t)}0≤t≤T is accepted with probability propor-
tional to the Radon-Nikodym derivative between the law of the S and the law of
W , the path is sampled from the law of S. The log of the Radon-Nikodym deriva-
tive has the form A(W (T ))−

∫ T
0 φ(t,W (t))dt where A and φ depend on the co-

efficients of the SDE. The problem lies in simulating
∫

φ(t,W (t))dt, which is an
awkward functional of the entire continuous-time path {W (t)}0≤t≤T . The key in-
sight is that exp(−

∫ T
0 φ(t,W (t))dt) is the conditional probability, given the path of

the Wiener process, that no arrivals occur by time T in a doubly stochastic Pois-
son process whose arrival rate at time t is φ(t,W (t)). This may be simulated by
straightforward or sophisticated stochastic thinning procedures, depending on the
characteristics of the function φ [12, 22, 42]. This approach is a significant devel-
opment: it is of theoretical interest and, when applicable, it eliminates the need for
the analyst to quantify and reduce discretization bias. More work is needed to ren-
der this approach widely applicable in finance and to study the efficiency gains it
produces. Acceptance-rejection sampling can be very slow, when the acceptance
probability is low, so this way of simulating SDEs exactly could be slower to attain
a target MSE than existing methods of SDE discretization. The speed of acceptance-
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rejection sampling can be improved by drawing the original samples from another
law. When the Radon-Nikodym derivative between the law of S and the original
sampling law is smaller, acceptance occurs faster. In this case, one might think of
drawing the original samples from the law of some other integrable Itō process,
not a Wiener process. For example, one might sample from the law of geometric
Brownian motion or of an Ornstein-Uhlenbeck process, because in many financial
models, S is closer to these than to a Wiener process. An interesting question is how
best to choose the original sampling law given the SDE one wishes to simulate.
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